- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Arlotta, Paola (1)
-
Bashir, Rashid (1)
-
Blatchley, Michael R. (1)
-
Boj, Sylvia F. (1)
-
Cable, Jennifer (1)
-
Engle, Sandra J. (1)
-
Feinberg, Adam W. (1)
-
Gonzalez, Anjelica L. (1)
-
Goodwin, Katharine (1)
-
Hughes, Alex J. (1)
-
Hull, Sarah M. (1)
-
Kamm, Roger D. (1)
-
Kemp, Melissa L. (1)
-
Lu, Aric (1)
-
May, Elebeoba E (1)
-
May, Elebeoba E. (1)
-
McDevitt, Todd C. (1)
-
Mishra, Deepak (1)
-
Montserrat Pulido, Núria (1)
-
Morishita, Yoshihiro (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Macrophages are critical to the formation of infection- and non-infection-associated immune structures such as cancer spheroids, pathogen-, and non-pathogen-associated granulomas, contributing to the spatiotemporal and chemical immune response and eventual outcome of disease. While well established in cancer immunology, the prevalence of using three-dimensional (3D) cultures to characterize later-stage structural immune response in pathogen-associated granulomas continues to increase, generating valuable insights for empirical and computational analysis. To enable integration of data from 3D in vitro studies with the vast bibliome of standard two-dimensional (2D) tissue culture data, methods that determine concordance between 2D and 3D immune response need to be established. Focusing on macrophage migration and oxidative species production, we develop experimental and computational methods to enable concurrent spatiotemporal and biochemical characterization of 2D versus 3D macrophage–mycobacterium interaction. We integrate standard biological sampling methods, time-lapse confocal imaging, and 4D quantitative image analysis to develop a 3D ex vivo model of Mycobacterium smegmatis infection using bone-marrow-derived macrophages (BMDMs) embedded in reconstituted basement membrane (RBM). Comparing features of 2D to 3D macrophage response that contribute to control and resolution of bacteria infection, we determined that macrophages in 3D environments increased production of reactive species, motility, and differed in cellular volume. Results demonstrate a viable and extensible approach for comparison of 2D and 3D datasets and concurrent biochemical plus spatiotemporal characterization of initial macrophage structural response during infection.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Cable, Jennifer; Arlotta, Paola; Parker, Kevin Kit; Hughes, Alex J.; Goodwin, Katharine; Mummery, Christine L.; Kamm, Roger D.; Engle, Sandra J.; Tagle, Danilo A.; Boj, Sylvia F.; et al (, Annals of the New York Academy of Sciences)The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3–6, 2022, experts in the field met at the Keystone symposium “Engineering Multicellular Living Systems” to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium “Organoids as Tools for Fundamental Discovery and Translation”.more » « less
An official website of the United States government
